844 research outputs found

    Evaluation of the Axial Vector Commutator Sum Rule for Pion-Pion Scattering

    Full text link
    We consider the sum rule proposed by one of us (SLA), obtained by taking the expectation value of an axial vector commutator in a state with one pion. The sum rule relates the pion decay constant to integrals of pion-pion cross sections, with one pion off the mass shell. We remark that recent data on pion-pion scattering allow a precise evaluation of the sum rule. We also discuss the related Adler--Weisberger sum rule (obtained by taking the expectation value of the same commutator in a state with one nucleon), especially in connection with the problem of extrapolation of the pion momentum off its mass shell. We find, with current data, that both the pion-pion and pion-nucleon sum rules are satisfied to better than six percent, and we give detailed estimates of the experimental and extrapolation errors in the closure discrepancies.Comment: Plain TeX file;minor changes; version to be published in Pys. Rev. D; corrected refs.12,1

    Revisiting Resource Pooling: The Case for In-Network Resource Sharing.

    Get PDF
    We question the widely adopted view of in-network caches acting as temporary storage for the most popular content in Information-Centric Networks (ICN). Instead, we propose that in-network storage is used as a place of temporary custody for incoming content in a store and forward manner. Given this functionality of in-network storage, senders push content into the network in an open-loop manner to take advantage of underutilised links. When content hits the bottleneck link it gets re-routed through alternative uncongested paths. If alternative paths do not exist, incoming content is temporarily stored in in-network caches, while the system enters a closed-loop, back-pressure mode of operation to avoid congestive collapse. Our proposal follows in spirit the resource pooling principle, which, however, is restricted to end-to-end resources and paths. We extend this principle to also take advantage of in-network resources, in terms of multiplicity of available sub-paths (as compared to multihomed users only) and in-network cache space. We call the proposed principle In-Network Resource Pooling Principle (INRPP). Using the INRPP, congestion, or increased contention over a link, is dealt with locally in a hop-by-hop manner, instead of end-to-end. INRPP utilises resources throughout the network more efficiently and opens up new directions for research in the multipath routing and congestion control areas

    Hash-routing schemes for information centric networking.

    Get PDF
    It is our great pleasure to welcome you to The 3rd ACM SIGCOMM Workshop on Information-Centric Networking (ICN 2013). The fundamental concept in Information-Centric Networking (ICN) is to evolve the Internet from today's host based packet delivery towards directly retrieving information objects by names in a secure, reliable, scalable, and efficient way. These architectural design efforts aim to directly address the challenges that arise from the increasing demands for highly scalable content distribution, from accelerated growths of mobile devices, from wide deployment of the Internet-of-Things (IoT), and from the need to secure the global Internet. Rapid progress has been made over the last few years, initial designs are sketched, new research challenges exposed, and prototype implementations are deployed on testbeds of various scales. The research efforts have reached a new stage that allows one to experiment with proposed architectures and to apply a proposed architectural design to address real world problems. It also becomes important to compare different design approaches and develop methodologies for architecture evaluations. Some research areas, such as routing and caching, have drawn considerable attention; some other areas, such as trust management, effective and efficient application of cryptography, experience from prototyping, and lessons from experimentations, to name a few, have yet to be fully explored. This workshop presents original contributions on Information-Centric Networking architecture topics, specific algorithms and protocols, as well as results from implementations and bexperimentation, with an emphasis on applying the new approach to address real world problems and on experimental investigations. New for this year is that the workshop includes a poster/demo session. We received a large number of submissions and as the workshop is limited in time we were only able to accept 20% of them as full papers. To promote sharing of latest results among workshop attendees, we also accepted 17% of the submissions as posters or demos

    Understanding Sharded Caching Systems

    Get PDF
    Sharding is a method for allocating data items to nodes of a distributed caching or storage system based on the result of a hash function computed on the item identifier. It is ubiquitously used in key-value stores, CDNs and many other applications. Despite considerable work has focused on the design and the implementation of such systems, there is limited understanding of their performance in realistic operational conditions from a theoretical standpoint. In this paper we fill this gap by providing a thorough modeling of sharded caching systems, focusing particularly on load balancing and caching performance aspects. Our analysis provides important insights that can be applied to optimize the design and configuration of sharded caching systems

    Framework and Algorithms for Operator-Managed Content Caching

    Get PDF
    We propose a complete framework targeting operator-driven content caching that can be equally applied to both ISP-operated Content Delivery Networks (CDNs) and future Information-Centric Networks (ICNs). In contrast to previous proposals in this area, our solution leverages operators’ control on cache placement and content routing, managing to considerably reduce network operating costs by minimizing the amount of transit traffic and balancing load among available network resources. In addition, our solution provides two key advantages over previous proposals. First, it allows for a simple computation of the optimal cache placement. Second, it provides knobs for operators to fine-tune performance. We validate our design through both analytical modeling and trace-driven simulations and show that our proposed solution achieves on average twice as many cache hits in comparison to previously proposed techniques, without increasing delivery latency. In addition, we show that the proposed framework achieves 19-33% better load balancing across links and caching nodes, being also robust to traffic spikes

    On the design of efficient caching systems

    Get PDF
    Content distribution is currently the prevalent Internet use case, accounting for the majority of global Internet traffic and growing exponentially. There is general consensus that the most effective method to deal with the large amount of content demand is through the deployment of massively distributed caching infrastructures as the means to localise content delivery traffic. Solutions based on caching have been already widely deployed through Content Delivery Networks. Ubiquitous caching is also a fundamental aspect of the emerging Information-Centric Networking paradigm which aims to rethink the current Internet architecture for long term evolution. Distributed content caching systems are expected to grow substantially in the future, in terms of both footprint and traffic carried and, as such, will become substantially more complex and costly. This thesis addresses the problem of designing scalable and cost-effective distributed caching systems that will be able to efficiently support the expected massive growth of content traffic and makes three distinct contributions. First, it produces an extensive theoretical characterisation of sharding, which is a widely used technique to allocate data items to resources of a distributed system according to a hash function. Based on the findings unveiled by this analysis, two systems are designed contributing to the abovementioned objective. The first is a framework and related algorithms for enabling efficient load-balanced content caching. This solution provides qualitative advantages over previously proposed solutions, such as ease of modelling and availability of knobs to fine-tune performance, as well as quantitative advantages, such as 2x increase in cache hit ratio and 19-33% reduction in load imbalance while maintaining comparable latency to other approaches. The second is the design and implementation of a caching node enabling 20 Gbps speeds based on inexpensive commodity hardware. We believe these contributions advance significantly the state of the art in distributed caching systems

    Efficient Hash-routing and Domain Clustering Techniques for Information-Centric Networks

    Get PDF
    Hash-routing is a well-known technique used in server-cluster environments to direct content requests to the responsible servers hosting the requested content. In this work, we look at hash-routing from a different angle and apply the technique to Information-Centric Networking (ICN) environments, where in-network content caches serve as temporary storage for content. In particular, edge-domain routers re-direct requests to in-network caches, more often than not off the shortest path, according to the hash-assignment function. Although the benefits of this off-path in-network caching scheme are significant (e.g., high cache hit rate with minimal co-ordination overhead), the basic scheme comes with disadvantages. That is, in case of very large domains the off-path detour of requests might increase latency to prohibitive levels. In order to deal with extensive detour delays, we investigate nodal/domain clustering techniques, according to which large domains are split in clusters, which in turn apply hash-routing in the subset of nodes of each cluster. We model and evaluate the behaviour of nodal clustering and report significant improvement in delivery latency, which comes at the cost of a slight decrease in cache hit rates (i.e., up to 50% improvement in delivery latency for less than 10% decrease in cache hit rate compared to the original hash-routing scheme applied in the whole domain)

    Large-scale spatial distribution of breeding Barn Swallows Hirundo rustica in relation to cattle farming

    Get PDF
    Capsule: The information on the spatial distribution of cattle farming stored in public bovine computerized databases can predict the distribution and abundance of breeding Barn Swallow Hirundo rustica L. across Europe. Aims: To develop and validate models of habitat factors which account for the distribution of breeding Barn Swallow colonies. Results: The models were based on data on the distribution of cattle farming provided by the public Bovine Computerized Database of the Regione Lombardia (northern Italy). Cattle distribution was a strong predictor of presence and size of Barn Swallow colonies as well as of the number of swallow colonies in a municipality. The models were robust and passed a cross-validation procedure and were used to estimate the spatial distribution of about 116,000 breeding pairs in awide area (8695 km(2)) of the low Po plain of northern Italy in 2001. Conclusions: Bovine computerized databases are mandatory in all European Union (EU) countries according to the EU Regulation (CE) 1760/2000. They may serve as a basis for wide scale modelling of the distribution and abundance of breeding Barn Swallow in Europe

    Mesoporous bioactive glass as a multifunctional system for bone regeneration and controlled drug release

    Get PDF
    Purpose: Coupling the potential for bone regeneration and the ability for in situ controlled drug release in a single device is a challenging field of research in bone tissue engineering; in an attempt to pursue this aim, mesoporous bioactive glass (MBG) membranes belonging to the SiO2-P2O5-CaO ternary system were produced and characterized. Methods: The glass was synthesized via a sol-gel route coupled with an evaporation-induced self-assembly process by using a non-ionic block co-polymer as a mesostructure former. MBG structure and morphology, as well as mesopores size and shape, were investigated by x-ray diffraction, transmission electron microscopy, and N2 adsorption-desorption measurements. In vitro bioactivity was investigated by soaking MBG membranes in simulated body fluid (SBF) for different time frames. Ibuprofen was encapsulated into MBG pores and drug release kinetics in SBF were assessed. Biological tests by using SAOS-2 cells were performed to assess the material cytocompatibility. Results: The material revealed significant ability to induce hydroxyapatite formation on its surface (bioactivity). Drug release kinetics in SBF are very similar to those obtained for mesoporous silica having mesopore size comparable to that of the prepared MBG (∼5 nm). No evidence of cell viability depression was detected during in vitro culture, which demonstrates the good biological compatibility of the material. Conclusions: The easiness of tailoring and shaping, the highly bioactive and biocompatible behavior, and the drug uptake/release ability of the prepared materials may suggest their use as "smart" multifunctional grafts for bone reconstructive surgery
    • …
    corecore